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A theoretical analysis of two-dimensional, finite-amplitude, thermal convection 
is made for a fluid which has an infinite Prandtl number. The vertical velocity 
disturbance is expanded in a double Fourier series which satisfies the horizontal 
and lateral boundary conditions. The resulting coupled sets of non-linear 
differential equations are solved numerically. It is found that for a particular 
Rayleigh number the number and size of the convection cells that form depend 
upon the ratio of the distance between the lateral boundaries to the depth of the 
fluid layer and on the initial conditions. The steady-state solutions are not unique 
and the solution for which the heat transport is a maximum is not necessarily 
the solution that results. Where there are no lateral boundaries, the lateral edges 
of the cells tend to tilt and the Nusselt number increases slightly. 

1. Introduction 
In  the theoretical investigation of convection the effects of initial conditions 

and lateral boundaries are usually neglected. One usually assumes that the 
steady-state solutions, at least for small Rayleigh numbers, are unique, and 
therefore one is justified in starting with any initial conditions. In most investiga- 
tions of convection it is also assumed that the fluid is infinite in horizontal extent. 
Then there is no horizontal length scale imposed by lateral boundaries and the 
wavelength of periodic cellular convection is an unknown parameter, which must 
be determined. So far no one has been able to derive this wavelength from the 
hydrodynamic and thermodynamic equations except in the trivial case a t  the 
critical Rayleigh number where only one wavelength is unstable. 

The most widely used criterion that has been used to select a wavelength for 
convection is the hypothesis proposed by Malkus (1954), that the convecting 
fluid should transport a maximum amount of heat. Recent studies of convection 
by Herring (1963, 1964) and Veronis (1966) have made use of this hypothesis to 
select wavelengths for plots of Nusselt number versus Rayleigh number. It seems 
feasible that under the turbulent conditions at large Rayleigh numbers envisaged 
by Malkus the hypothesis may find proof in statistical mechanical considerations. 
This has not yet been accomplished. At small Rayleigh numbers convection sets 
in as an organized secondary flow, and the validity of a thermodynamic principle 
in determining the periodicity of the flow appears questionable. The validity of 
the equivalent principle of maximum dissipation in cylindrical Couette flow has 
recently been challenged by Meyer (1967); however, in order to select a periodicity 
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length he has to make an additional assumption, that the preferred length is 
that one which results in uniform cells. 

In  Herring’s calculations all non-linear interactions are neglected except 
those which represent interactions of the fluctuations with the horizontally 
averaged temperature field. This is equivalent to expanding the horizontal 
dependence of the vertical velocity in a Fourier series in which only the sine 
terms are used. In Veronis’s calculations the complete set of non-linear inter- 
actions me retained. He uses a Fourier cosine expansion for the horizontal 
dependence of the vertical velocity, which is appropriate for a region confined 
by free-insulating lateral boundaries. However, since he is only interested in 
single-cell solutions in the steady state, he uses a diagonalized two-dimensional 
Fourier expansion in which all the odd coefficients are omitted. Thus his method 
is not applicable to the investigation of the effects of initial conditions, nor can 
it be used to investigate the transitions to multiple-cell solutions. 

The aim of the present paper is to investigate the factors which govern the 
number and size of convection cells that will form under specified conditions for 
two-dimensional flow. Thus we cannot neglect the fluctuating self-interactions, 
as Herring did, since these interactions are probably important in the wavelength 
selection mechanism, nor can we use the very e5cient expansion scheme used 
by Veronis since it is only applicable to single-cell solutions. The complete 
expansions, however, result in extremely complicated sets of equations for the 
Fourier coefficients, which can be solved economically only for a very restricted 
class of conditions even with a high-speed electronic computer. Accordingly, it 
was decided to solve the equations only for the limiting case of very large Prandtl 
number. Then the fluctuating self-interactions only appear in the heat-con- 
duction equation and the resulting sets of equations for the Fourier coe%cients 
are considerably simpler than those used by Veronis. It is believed that this 
simplification gives a good description for fluids which have large Prandtl 
numbers and provides at  least a qualitatively correct description of fluids with 
Prandtl numbers greater than unity (Kraichnan (1962) has discussed the effect of 
Prandtl number on convection at some length). We will also give particular atten- 
tion to initial conditions and concentrate mainly on initially infinitesimal ‘white 
noise ’ disturbances, which should not prejudice our solutions, and which therefore 
should be similar to the initial disturbances that occur in laboratory experiments. 

2. The basic equations 
We will restrict our investigation to an incompressible fluid in which the 

temperature is uniform on the horizontal boundary surfaces. All motions are 
assumed to  be two-dimensional in the (x, 2)-plane. All properties of the fluid are 
assumed to be constant except for density as it affects the buoyancy term (the 
Boussinesq approximation). The equation of state is assumed to be linear. Under 
these conditions the Navier-Stokes equations become 
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and the continuity equation 
au aw -+- = 0, 
ax az (3) 

where u is the velocity in the x-direction (horizontal); w the velocity in the 
z-direction (vertically downward); P the pressure; T the temperature with 
respect to some reference temperature; p the density at the reference tempera- 
ture; a the coefficient of thermal volume expansion; v the kinematic viscosity; 
and g the acceleration of gravity. We will also need the source-free heat con- 
duction equation 

(4) 

where K is the thermometric conductivity. 
If we differentiate (1) by z and (2) by x and subtract, we obtain 

It is convenient to write our equations in dimensionless form using for the 
length scale the depth of the fluid layer h, for the time scale h2/K, and for the 
temperature scale, the difference in temperature between the top and bottom 
surfaces AT. It is also convenient to divide the temperature T into a horizontal 
mean, F(z, t ) ,  and a fluctuating part, B(x ,z , t ) ,  so that T = F + e  and 8 = 0. 
Equations (4) and (5) then become 

aF ae ae ae aF 
(6) 

and 

where P = V / K ,  

(9) 
is the Prandtl number and 

is the Rayleigh number. 

number so large that it can be considered infinite. Thus (7) can be written 

R = agATh3/~v, 

We will now assume that we are dealing with a fluid which has a Prandtl 

It will also be convenient to use the equation obtained from (10) by differentiating 
with respect to x, 

6-2 
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3. Boundary conditions 
We will assume that the horizontal boundary surfaces a t  z = 0 and z = 1 are 

perfectly flat and fixed but not capable of supporting tangential stresses, the 
so-called ‘free boundary conditions’; thus 

w = a2w/az2 = 0 at  z = 0 , l .  (12) 

If we further assume that the horizontal boundary surfaces are perfectly con- 
ducting so that the horizontal fluctuating part of the temperature vanishes 
there, then we have 8 = 0  at z = O , l .  

Equation (1 1) then gives the further condition on w that 

(13)  

a4w/az4 = 0 at z = 0 , l .  (14) 

We will consider two different configurations with respect to lateral boundary 
conditions. In  the first case the surfaces at  x = 0 and x = L are ‘free’ so that 

u = a2u/ax2 = 0 a t  x = 0, L, (15) 

aqax = o at x = O,L. (16) 

awlax = a3w/ax3 = o at  x = 0 ,  L. (17) 

and perfectly insulating so that 

Equations (3) and (10) then give the further condition on w that 

In  the second case the fluid is assumed to be infinite in horizontal extent. 

4. Solution method for finite horizontal extent 
We will expand the vertical velocity, w, in a double Fourier series with time- 

dependent coefficients such that the boundary conditions (12), (14) and (17) are 
satisfied, and such that, when the continuity equation (3) is solved for u, the 
boundary conditions (15) are satisfied. Such an expansion is 

w = C C Amn(t) cos (mnx/L) sin (nnz). 
m n  

Substituting (18) into (3) and solving for u, we have 

u = - 2 Amn(t) (nL/m) sin (mnx/L) cos (nm). (19) 
m n  

We will also substitute (18) into (1 1) and solve for 8. The differentiation of the 
Fourier series term by term is valid here since we can carry out an integration by 
parts and show that the differentiated series converges to a series in which the 
coefficients are the Fourier coefficients of the derivatives of w since the differ- 
entiated parts vanish when we apply the boundary conditions (12) and (17). In  
this manner we obtain 
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We will also expand the horizontally averaged temperature, F ,  in a Fourier 
series with time-dependent coefficients. We will consider at  this time only two 
different initial temperature profles: the linear profile and the profile generated 
by suddenly changing the temperature at  one of the two horizontal boundary 
surfaces by an increment, AT. For these temperature profiles an appropriate 
expansion is 

where G(0) = 0 in the linear case and C,(O) = 1 in the sudden change case. 
into the heat 

conduction equation (6). We then obtain sets of coupled ordinary differential 
equations for the Fourier coefficients A,,(t) and Cl(t) .  First, we multiply (6) 
by (1/L) cos (km/L)  sin (rnz) and integrate from x = 0 to x = L and from z = 0 
to z = 1. This gives 

T = z - 1 + 2 I: C, ( t )  sin (Znz)/h, (21) 
1 

We may now substitute these expansions for w, u, 8, and 

-A;,  ( t )  [(rSn2 + k2n2/L2)2/(4Rk2n2/L2)] 
- C x C A,, ( t )  Aij  ( t )  (nnilm) [(jznz + izn2/L2)2~(Ri2n2/L2)] I$&Ig& 

m n i j  

- x C A,, ( t )  A ,  (t)jn [(jznZ + i27~2/L~)~/(Ri%~/L~)]I:~$ Iky, 
m n i  j 

+ A,, ( t ) / 4  + C Z A,, ( t )  C, ( t )  1:s 
n l  

= Ab(t) [(r2n2 + k 2 ~ 2 / L 2 ) 3 / ( 4 R k 2 ~ 2 / L 2 ) ] ,  
where 

Secondly, we multiply (6) by (1/L) sin ( rm)  and integrate from x = 0 to x = L 
and from z = 0 to z = 1. This gives 

C; ( t ) / m  - x C A,, ( t )  A,, ( t )  ( nL2/ 2Rm277) ( jzmz + m2n2/L2)2 I,!fk 
m n  j 

- Amn(t) A,(t) (jL2/2Rm2n) (jzn2+m"n"/L2)2I:;; 
m n j  

= -C,.(t)rm. (23) 

If we now truncate the series expansions to M terms horizontally and N terms 
vertically, we will have M x N equations in (22) and N equations in (23). These 
can be solved numerically for appropriate initial conditions using the Runge- 
Kutta-Gill fourth-order method (Romanelli 1960, pp. 110-120). 

5. Results for the linear temperature profile 
Most of the calculations made in this study involved starting with a linear 

temperature profile, which was generated by setting the C,(O) = 0 in (21). A 
small velocity disturbance was introduced in the fluid at  t = 0,  and the time 
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development of the system was then followed until a steady state was obtained. 

N = Hh/kAT, (24) 
The Nusselt number 

where H is the heat transferred per unit area per unit time, and k is the thermal 
conductivity of the fluid, was calculated as a function of the Rayleigh number R, 
and the length ratio of the distance between the lateral boundaries to the depth 
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FIGURE 1. Time development of Nusselt number starting from a linear temperature 
profile and an infinitesimal disturbance. 

of the fluid layer L. In  general, the Nusselt numbers for the top and bottom 
surfaces were nearly equal at  all times in the case of an initially linear temperature 
profile and exactly equal when a steady state was achieved irrespective of the 
initial conditions. Figure 1 shows the time development of the Nusselt number 
for Rayleigh numbers of 2630, which happens to be four times the critical 
Rayleigh number for free-conducting boundaries for a layer of infinite horizontal 
extent (4R,), and 10,520 (1622,) at  a length ratio L of 1.3. In each case the 
initial velocity disturbance at  t = 0 was essentially ‘white noise ’ ; that is, all the 
Fourier components of the velocity disturbance were equal and very small 
compared to  the final amplitude of the largest component. In  the present case 
initial amplitudes on the order of low6 were used and thus were effectively infini- 
tesimal compared to the largest final amplitudes, which were on the order of 
101. More will be said on this point later in this section. 

The number of terms in the Fourier expansion that is necessary to give accurate 
results is a function of Rayleigh number and length ratio. In  general, a sufficient 
number of terms was used so that the Nusselt number was within 1% of that of 
the next higher approximation. To meet this requirement it was found that the 
number of horizontal terms necessary for any particular Rayleigh number was 
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roughly proportional to the product of the length ratio with the number of 
vertical terms. An IBM 7094-7040 Direct Coupled System was used for all 
computations. The memory of the computer limited accurate calculations to 
Rayleigh numbers less than about 20,000. In  a typical calculation for R = 4R,, 
N = 6 and M = 6 it took approximately 10 minutes of computation time to 
reach a reasonably steady state. 
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FIGURE 2. Steady-state Nusselt number v e r m  length ratio for various Rayleigh numbers. 

A plot of Nusselt number reached in the steady state versus length ratio for 
various Rayleigh numbers is seen in figure 2. The approximate location of the 
maximum Nusselt number for each Rayleigh number is indicated by an arrow. 
It is seen that the length ratio for maximum heat transfer decreases slightly 
with increasing Rayleigh number. The discontinuities indicated by the dashed 
lines on the right side of the figure represent the change from the development 
of a one-cell (where ‘cell’ is taken to mean a single roll) to a two-cell configuration 
when infinitesimal initial disturbances are used. It is seen that the transition 
length ratio decreases slightly with increasing Rayleigh number. 

Figure 3 shows additional calculations for a Rayleigh number of 2630 (4Rc). 
The circles and solid line indicate the steady-state Nusselt number obtained when 
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infinitesimal initial disturbances are used. It is seen that for increased length 
ratio the Nusselt number decreases sharply at the points where the number of 
cells increases. The magnitude of this decrease decreases for changes between 
increasingly larger numbers of cells. In  addition, it appears that the maximum 
Nusselt number reached is nearly the same no matter how many cells form. 
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FIGURE 3. Steady-state Nusselt number versus length ratio for R = 4R,. The length ratio 
regions for solutions with various numbers of cells are shown for initially infinitesimal 
disturbances. 

The squares in figure 3 indicate the results of calculations in which the Fourier 
coefficients of the velocity disturbance and of the temperature which resulted 
from the steady-state solution for the next smaller length ratio starting with 
L = 1.65 (a one-cell solution) were used as initial conditions. One might look 
on this procedure as a sort of adiabatic stretching apart of the lateral boundaries. 
The results were somewhat surprising in that the system would not go over to a 
two-cell solution even when the heat transfer for the one-cell solution was 
markedly less than that obtainable for the two-cell solution at that length ratio. 
Only when the length ratio was increased to greater than 3-0 did the system 
start to transform, and then into a three-cell solution. The transformation took 
place so very slowly that it was not possible to accurately fix the length ratio 
where it first occurred. 

The triangles in figure 3 indicate the results of calculations in which the 
Fourier coefficients that resulted from the steady-state solution for the next 
larger length ratio starting with L = 1.7 (a two-cell solution) were used as initial 
conditions, a sort of adiabatic pushing together of the lateral boundaries. 
In  this case the system would not go over to a one-cell solution until the 
length ratio was decreased to smaller than about 1-06, which is the limit for 
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the formation of two equal cells according to linear theory. At L = 1.0, for 
example, the two-cell solution decayed rapidly until the velocity disturbance 
was very small and the Nusselt number very nearly unity; then the one-cell solu- 
tion grew until it obtained its normal velocity distribution and Nusselt number. 

On examining the Fourier components of the velocity, A,,(t), for the one-cell 
solution, one finds that, as time increases indefinitely, the components for which 
m + n is odd become vanishingly small. In  the two-cell solution the components 
for which m + n is even become vanishingly small as time increases indefinitely. 
If the m + n odd components are set exactly equal to zero, only an odd number 
of cells can form, and these components always remain zero. Similarly, if the 
m + n even components are set exactly equal to zero, only an even number of cells 
can form. The mathematical reason for this behaviour can be seen if one examines 
(22). Here one sees that growth of one class (m + n odd or even) of Fourier com- 
ponents will not occur unless a t  least one component of that same class is non- 
zero. In  general, it appears that transitions between even- and odd-cell solutions 
are inhibited when one class of solutions has sufficiently larger-amplitude Fourier 
components than the other class. 

An investigation was made to determine the ratio of amplitudes of the Fourier 
components of odd- and even-cell solutions that is necessary to cause one or the 
other class of solution to develop from small disturbances. One sees in figure 3 
for R = 4Rc that at  a length ratio of about L = 1.9 the Nusselt numbers for one- 
and two-cell solutions are equal. Thus any possible tendency for the system to  
move to a state of maximum heat transfer will have a minimum effect at this 
length ratio. Keeping both A,, and A,, small ( lo-, or less) and setting the rest 
of the Fourier components of the velocity, A,,, equal to 10-lo, the ratio of the 
initial values of A,, to A,, was varied. It was found that, if the initial ratio of A,, 
to A,, was about 10, or greater, the one-cell solution resulted. The apparent 
reason for this behaviour is that, until the components reach an amplitude of 
about 1 (for R = 4RJ, the non-linear interactions are negligible and the various 
horizontal wave-numbers present in the horizontal Fourier expansion develop 
uncoupled. The horizontal wave-number that &st attains sufficient amplitude 
to cause non-linear interactions such that the temperature field is modified will 
effectively be ‘locked in’ and will dominate the flow pattern unless it is very 
inappropriate for the length ratio involved-for example, an initially dominant 
one-cell solution at  a length ratio of 3.5 does not persist but transforms into a 
three-cell solution. At a length ratio of 1.9 the principal Fourier component for 
a two-cell solution is amplified at a much faster rate than that for a one-cell 
solution; thus, unless the initial amplitude of A,, is about 10, times greater, A,, 
will attain the dominating amplitude first and a two-cell solution will result. 

6. Results for a sudden change in temperature 
In  order to further explore the horizontal wavelength selection process for this 

system some calculations were made with an initial temperature profile which 
resulted from starting with an isothermal fluid and then suddenly changing the 
temperature a t  one of the horizontal boundaries (increasing the bottom OT 
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decreasing the top temperature) by an increment AT at t = 0. This temperature 
profile is generated by setting the C,(O) = 1 in (21). The system was investigated 
in a manner identical with that used for the system with an initially linear profile. 
The behaviour of the system, however, was somewhat different, as can be seen 
in figure 4. The Nusselt number for the surface a t  which the temperature was 
suddenly changed decreased rapidly just after t = 0 and then slowly decreased 
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FIUURE 4. Time development of Nusselt number starting from a sudden change in 
temperature and an infinitesimal disturbance. 

towards unity until onset of convection took place; the Nusselt number for the 
unchanged surface increased very slowly towards unity until onset of convection. 
At low Rayleigh numbers, R = 4R,, the Nusselt numbers both became almost 
unity and the temperature profile almost linear before onset of convection. Thus 
at  low Rayleigh numbers the effect of the initial temperature profile upon the 
subsequent convection was negligible. For larger Rayleigh numbers, R = 16R,, 
the effects of the initial temperature profile become more important since onset 
of convection occurs before the profile has time to become linear. 

A series of calculations for various length ratios a t  R = 16R, was made to see 
if the length ratio for the transition from development of one-cell to the develop- 
ment of two-cell solutions was affected by the initial temperature profile. It was 
found that the transition occurred between length ratios of 1.40 and 1.45 for the 
case of a sudden change in temperature compared with between 1.45 and 1.50 
for the case of an initially linear temperature profile. According to the linear 
theory for the case of a sudden change in temperature (Foster 1965a) the wave- 
lengths of the disturbances which are amplified the most at onset of convection 
are independent of the depth of the fluid layer and are inversely proportional to 
the cube root of AT when the Rayleigh number exceeds about lo4. Thus for 
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larger Rayleigh numbers smaller wavelength disturbances are amplified more 
at onset of convection, and the decrease of the transition length ratio for larger 
Rayleigh numbers may be explained by the ‘locking in ’ phenomenon discussed 
in $5. 

7. The case of infinite horizontal extent 
In  order to apply Fourier analysis to the investigation of a layer of fluid which 

has no lateral boundaries one must assume that the variables are exactly periodic; 
however, the interval over which this periodicity takes place is not known apriori. 
One can only argue that experiments show that periodic convection cells may 
form, and for convection apparatus with very large horizontal length to depth 
ratios the periodicity is independent of the length ratio. The choice of the interval 
over which periodicity occurs will be discussed later. 

The Fourier series must now include both sine and cosine terms since there are 
no lateral boundary surfaces which place restrictions on the allowed functions. 
Thus the expansion for the vertical velocity disturbance becomes 

(25) 

where a is the dimensionless wave-number of the periodicity. Solving (3) for u 
we now have 

w = I; [A,,(t) cos (maz) + B,, ( t )  sin ( m z ) ]  sin (nm), 
m n  

u = - 2 x (nr/ma) [Am, ( t )  sin (maz) -Bmn(t) cos (max)] cos (nnz), (26) 
m n  

and solving (1 1) for 0 gives 

(n2n2 + m2a2)2 
Rm2a2 

[Amn@) cos (maz) + B,,(t) sin (maz)] sin (nm). 
m n  

The expansions for w, u, 8 and are substituted into the heat conduction 
equation (6) and sets of coupled ordinary differential equations for the Fourier 
coefficients Amn(t), Bmn(t) and Cr(t) are obtained in a manner similar to that 
used in $ 4. In  the present case these sets of equations are much more complicated 
than (22) and (23) since there are cross-terms involving products of A,,(t) and 
Bmn(t) as well as N x M additional equations for Bmn(t). The memory of the 
computer limited calculations for this vastly complicated system to those for 
N = N = 6 or less terms. This in turn limited accurate calculations to Rayleigh 
numbers less than about R = 6Rc. 

A series of calculations for R = 4Rc was carried out starting with a linear 
temperature profile. The procedure followed was identical to that used in $ 5  for 
the case of finite horizontal extent. If we consider the dimensionless ‘periodicity 
half-length, to be equal to r/a,  then a plot of Nusselt number versus periodicity 
half-length for the infinite case can be compared with the plot of Nusselt number 
versus length ratio for the finite case. It was found that the two plots were very 
similar. The periodicity half-length in the infinite case and the length ratio in the 
finite case for maximum Nusselt number for one-cell solutions were very nearly 
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the same, about 1-35, though the maximum Nusselt number for the infinite 
case was slightly higher, about 3.21, than that for the finite case, about 3.07. 

Physically, the effect of the lateral boundaries is to place a constraint on the 
allowable motions of the fluid, and, in general, such a constraint would be 
expected to cause a reduction in the heat transfer of the system. Apparently the 
only restriction that ‘free ’, insulated lateral boundaries can impose upon the 
system is that the flow at the lateral boundaries is required to be vertical. In  the 
case of infinite horizontal extent it was found that the lateral edges of the cells 
were not vertical but were slightly inclined so that alternate cells were somewhat 
wider at  the top than at the bottom with the cells in between wider at  the bottom 
than at the top. In  the finite case the cells seemed to be symmetrical as far as 
could be determined in the cases of two and three cells. Since the lateral boun- 
daries exert a strong influence on the flow pattern when the number of cells is 
small, it is not surprising that the lateral edges of the cells did not tilt. Unfortun- 
ately we could not carry out accurate calculations for configurations of more 
than four cells in the finite case, but we can speculate that, if the distance between 
the lateral boundaries were greatly increased so that a very large number of 
cells would form, then the influence of the lateral boundaries on the interior 
cells would be small. In this case the lateral edges of the interior cells might 
become tilted and the Nusselt number might increase and approach the value 
calculated for no lateral boundaries. 

Mathematically, the effect of the lateral boundaries is to permit only cosine 
terms in the Fourier expansion for the vertical velocity. If in the Fourier expan- 
sion for w, equation (25 ) ,  one retains only the sine terms, then the only non-linear 
terms occur in the sets of equations for B,,(t) and q(t) similar to (23). These 
are the non-linear terms which represent the interaction of the fluctuations with 
the mean temperature field. The non-linear terms which represent the fluctuating 
self-interactions in (22) do not appear when the expansion for w (for infinite 
Prandtl number) includes only sine terms since the sine functions are orthogonal 
in the integrals involved. Calculations for the sine expansion of w show a Nusselt 
number versus periodicity half-length relation very similar to the two other 
expansions. The maximum Nusselt number for R = 4Rc again occurred at  about 
1.35 with a magnitude of about 3.19. This is close to, but slightly less than, that 
for the complete sine-cosine expansion, which is to be expected since the incom- 
plete expansion imposes a constraint on the possible fluid motions. It is interest- 
ing to note that in the complete expansion solution the principal sine function 
is favoured; at  maximum Nusselt number for R = 4Rc and a one-cell solution, 
the ratio Bll/Al, is 1.8. The mathematical reason for the favouring of the sine 
functions can be seen by examining the non-linear terms from the fluctuating 
self-interactions in the analogue to ( 2 2 ) .  Only the cross-terms A,, ( t )  Bij ( t )  
appear in the equations for the sine coefficients while both the A,,(t)A,(t) and 
B,,(t)Bir(t) terms appear in the equations for the cosine coefficients. Since the 
net effect of the fluctuating self-interactions is to inhibit the fluctuations, the 
cosine coefficients are suppressed. 

The periodicity half-length at which solutions for one cell changed to solutions 
for two cells occurred at  approximately the same point as in the case of finite 
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length. Ideally, the analysis should be carried out at  successively longer period- 
icity lengths so that the preferred cell size could be ascertained with greater 
accuracy by noting the transition periodicity length for a large number of cells; 
however, the restricted memory of the computer and the limited computer time 
available prevented extending the analysis beyond the first transition. 

8. Discussion of results 
The present investigation shows that at  small Rayleigh numbers and inh i t e  

Prandtl number the number and size of convection cells that form for a specified 
Rayleigh number depend on the ratio of the distance between the lateral 
boundaries to the depth of the fluid layer and on the initial conditions. For 
example, at R = 4R, and L = 1.8 an initially infinitesimal ‘white noise’ disturb- 
ance will grow into a two-cell solution and will in the steady state have a Nusselt 
number of about 2-80 even though a one-cell solution for the same conditions 
would have a steady-state Nusselt number of 2.95. Thus the hypothesis that the 
system should tend to one in which heat transport is a maximum is not valid a t  
low Rayleigh numbers for two-dimensional flow. There are under certain con- 
ditions more than one metastable solution which can develop depending upon 
the initial conditions. 

Busse (1967) has shown in the case where there are no lateral boundaries that 
below a Rayleigh number of about 20,000 two-dimensional convection should 
be stable over a range of wavelengths. Chen & Whitehead (1968) have shown 
experimentally that it is possible to artificially induce two-dimensional con- 
vection cells which are stable over a range of wavelengths. A more natural way 
to induce a range of wavelengths, which was discussed in 8 6, is to rapidly change 
the temperature at one horizontal surface. In  this case it is possible for the fluid 
in a relatively thin boundary layer to become unstable for a wavelength related 
to the boundary-layer thickness and independent of the depth of the fluid layer. 
Experiments (Foster 1965b) have shown that the wavelengths of disturbances 
that are amplified the most at  onset of convection determine the wavelengths 
of the initial convection cells. Provided these wavelengths are within the stable 
band for the Rayleigh number involved, these wavelength convection cells 
should persist. As long as they are small, the initial disturbances proceed to grow 
uncoupled, and the phenomenon is essentially linear. Thus the linear theory 
can be extremely useful in the prediction of convection cell size since it can 
provide realistic initial conditions for the non-linear theory. This is particularly 
true in the case where there are no lateral boundaries because in this case there 
is no a priori horizontal length scale. 

The basic reason for the failure of the principle of maximum heat transport 
is that convection at  low Rayleigh number is an organized steady flow which is 
dependent upon its past history. At large Rayleigh numbers the flow becomes 
turbulent and may lose any memory of its past history. In  this case, perhaps 
statistical mechanical considerations can be used to determine the characteristic 
eddy size in the steady state. However, in geophysical fluids, such as the ocean 
and the atmosphere, it  is likely that even turbulent convection may exhibit eddy 
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size distributions that depend upon the initial conditions since it is quite common 
to find systems which are not in a steady state in nature. 
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